4.6 Article

Shift of symbiont communities in Acropora tenuis juveniles under heat stress

期刊

PEERJ
卷 5, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj.4055

关键词

Acropora; Symbiodinium; Clade D; Heat tolerance; Long-term; Coral juvenile

资金

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan [24570030, 16H02490]
  2. JST Core Research for Evolutional Science and Technology (CREST) Grant, Japan [JPMJCR13A1]
  3. Grants-in-Aid for Scientific Research [16H02490, 24570030] Funding Source: KAKEN

向作者/读者索取更多资源

Ocean warming is a major threat to coral reefs, leading to an increasing frequency and amplitude of coral bleaching events, where the coral and its algal symbiont associations breakdown. Long-term change'and resilience of a symbiont community in coral juveniles is l thought to be one of the most important aspects for determining therma tolerance of the coral holobionts; however, despite its importance, they are not well documented in both under elevated temperature and even under natural condition. Here we investigated changes in symbiont communities in juveniles of the coral Acropora tenuis under controlled heat stress conditions (30 degrees C, 31/32 degrees C) and natural variations in seawater temperatures (19-30 degrees C) for up to four months. Compared with the ambient temperature conditions, coral survival rates were higher when exposed to 30 degrees C, but survival rates decreased when exposed to 31/32 degrees C. Symbiodinium types A3, Cl, sand D1-4 were detected in the juveniles under all thermal conditions; however, in higher water temperatures (31/32 degrees C), both the prevalence of D1-4 Symbiodinium and the number of juveniles harboring only this type of symbiont increased after two to four months later. In contrast, colonies at lower temperatures (30 degrees C and ambient) harbored multiple clades of symbionts over the same experimental period. These results highlight.. the flexibility of the coral Symbiodinium symbiosis for juvenile A. terms under variable thermal conditions. In particular, the benefit of the preferential association with type D1-4 can be considered as a response when under heat-stress conditions, and that could help corals to cope with ocean warming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据