4.6 Article

Geometric morphometrics reveals sex-differential shape allometry in a spider

期刊

PEERJ
卷 5, 期 -, 页码 -

出版社

PEERJ INC
DOI: 10.7717/peerj.3617

关键词

Sexual size dimorphism; Allometry; Sexual selection; Spiders; Donacosa merlini; Donana

资金

  1. Ministerio de Ciencia e Innovacion [022/2007]
  2. Consejo Superior de Investigaciones Cientificas [022/2007]
  3. [CGL2013-42643-P]

向作者/读者索取更多资源

Common scientific wisdom assumes that spider sexual dimorphism (SD) mostly results from sexual selection operating on males. However, testing predictions from this hypothesis, particularly male size hyperallometry, has been restricted by methodological constraints. Here, using geometric morphometrics (GMM) we studied for the first time sex-differential shape allometry in a spider (Donacosa merlini, Araneae: Lycosidae) known to exhibit the reverse pattern (i.e., male-biased) of spider sexual size dimorphism. GMM reveals previously undetected sexdifferential shape allometry and sex-related shape differences that are size independent (i.e., associated to the y-intercept, and not to size scaling). Sexual shape dimorphism affects both the relative carapace-to-opisthosoma size and the carapace geometry, arguably resulting from sex differences in both reproductive roles (female egg load and male competition) and life styles (wandering males and burrowing females). Our results demonstrate that body portions may vary modularly in response to different selection pressures, giving rise to sex differences in shape, which reconciles previously considered mutually exclusive interpretations about the origins of spider SD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据