4.7 Article

Deposition of Visible Light-Active C-Doped Titania Films via Magnetron Sputtering Using CO2 as a Source of Carbon

期刊

NANOMATERIALS
卷 7, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/nano7050113

关键词

carbon doping; titanium dioxide; carbon dioxide; magnetron sputtering; photocatalysis; visible light; methylene blue; stearic acid

资金

  1. Thailand Research Fund [PHD/0067/2554]

向作者/读者索取更多资源

Doping of titanium dioxide with p-block elements is typically described as an efficient pathway for the enhancement of photocatalytic activity. However, the properties of the doped titania films depend greatly on the production method, source of doping, type of substrate, etc. The present work describes the use of pulsed direct current (pDC) magnetron sputtering for the deposition of carbon-doped titania coatings, using CO2 as the source of carbon; ratios of O-2/CO2 were varied through variations of CO2 flow rates and oxygen flow control setpoints. Additionally, undoped Titanium dioxide (TiO2) coatings were prepared under identical deposition conditions for comparison purposes. Coatings were post-deposition annealed at 873 K and analysed with scanning electron microscopy (SEM), X-ray diffreaction (XRD), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The photocatalytic properties of the thin films were evaluated under ultraviolet (UV) and visible light irradiation using methylene blue and stearic acid decomposition tests. Photoinduced hydrophilicity was assessed through measurements of the water contact angle under UV and visible light irradiation. It was found that, though C-doping resulted in improved dye degradation compared to undoped TiO2, the UV-induced photoactivity of Carbon-doped (C-doped) photocatalysts was lower for both model pollutants used.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据