4.7 Article

Dynamic Response of Graphitic Flakes in Nematic Liquid Crystals: Confinement and Host Effect

期刊

NANOMATERIALS
卷 7, 期 9, 页码 -

出版社

MDPI AG
DOI: 10.3390/nano7090250

关键词

graphitic flakes; liquid crystal; Maxwell-Wagner polarization; dynamic response

资金

  1. Basic Research Laboratory Program through the Ministry of Science, ICT & Future Planning and Polymer Materials Fusion Research Center [2014R1A4A1008140]
  2. National Nature Science Foundation of China [61605167]
  3. Science and Technology Research Fund of Henan Provence [162102410093, 172102310478]
  4. XuChang City
  5. Key Scientific Research Project of Universities and Colleges in Henan Province [17A430028]

向作者/读者索取更多资源

Electric field-induced reorientation of suspended graphitic (GP) flakes and its relaxation back to the original state in a nematic liquid crystal (NLC) host are of interest not only in academia, but also in industrial applications, such as polarizer-free and optical film-free displays, and electro-optic light modulators. As the phenomenon has been demonstrated by thorough observation, the detailed study of the physical properties of the host NLC (the magnitude of dielectric anisotropy, elastic constants, and rotational viscosity), the size of the GP flakes, and cell thickness, are urgently required to be explored and investigated. Here, we demonstrate that the response time of GP flakes reorientation associated with an NLC host can be effectively enhanced by controlling the physical properties. In a vertical field-on state, higher dielectric anisotropy and higher elasticity of NLC give rise to quicker reorientation of the GP flakes (switching from planar to vertical alignment) due to the field-induced coupling effect of interfacial Maxwell-Wagner polarization and NLC reorientation. In a field off-state, lower rotational viscosity of NLC and lower cell thickness can help to reduce the decay time of GP flakes reoriented from vertical to planar alignment. This is mainly attributed to strong coupling between GP flakes and NLC originating from the strong p -p interaction between benzene rings in the honeycomb-like graphene structure and in NLC molecules. The high-uniformity of reoriented GP flakes exhibits a possibility of new light modulation with a relatively faster response time in the switching process and, thus, it can show potential application in field-induced memory and modulation devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据