4.7 Article

Specific Surface Modifications of Silica Nanoparticles Diminish Inflammasome Activation and In Vivo Expression of Selected Inflammatory Genes

期刊

NANOMATERIALS
卷 7, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/nano7110355

关键词

silica nanoparticles; inflammation; inflammasome; in vitro vs. in vivo

资金

  1. German Federal Ministry of Education and Research (BMBF) NanoGEM Project [03X0105O]

向作者/读者索取更多资源

Silica (SiO2) nanoparticles (NPs) usage includes, but is not limited to, industrial and biomedical applications. Toxic effects of SiO2 NPs have been explored either in vitro or in vivo, assessing different surface modifications to reduce their harmful effects. Here, murine bone marrow-derived dendritic (BMDC) and a mouse model of mild allergic inflammation were used to study inflammasome activation and lung inflammation. Our results showed that SiO2 plain NPs induced NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome activation, increasing interleukin (IL)-1 beta release in vitro, and, to a lesser extent, in vivo. In addition, SiO2 plain NPs triggered a pulmonary inflammatory milieu in both non-sensitized (NS) and sensitized (S) mice, by inducing the expression of key inflammatory cytokines and chemokines. Electron microscopy showed that SiO2 NPs were mostly localized in alveolar macrophages, within vesicles and/or in phagolysosomes. Both the in vitro and the in vivo effects of SiO NPs were attenuated by coating NPs with phosphonate or amino groups, whereas PEGylation, although it mitigated inflammasome activation in vitro, was not a successful coating strategy in vivo. These findings highlight that multiple assays are required to determine the effect of surface modifications in limiting NPs inflammatory potential. Taken together, these data are obtained by comparing in vitro and in vivo effects of SiO2 NPs suggest the use of amino and phosphonate coating of silica NPs for commercial purposes and targeted applications, as they significantly reduce their proinflammatory potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据