4.5 Article

New Insights into the Adsorption of Oleate on Cassiterite: A DFT Study

期刊

MINERALS
卷 7, 期 12, 页码 -

出版社

MDPI AG
DOI: 10.3390/min7120236

关键词

cassiterite; oleate; flotation; adsorption mechanism; first-principles calculations

资金

  1. National Natural Science Foundation of China [51674066, 51204035]

向作者/读者索取更多资源

A new understanding of the adsorption mechanism of oleate on cassiterite surfaces is presented by density functional theory (DFT) calculations. Various convergence tests were conducted to optimize the parameter settings for the rational simulation of cassiterite bulk unit cell and surface slabs. The calculated surface energies of four low-index cassiterite cleavage planes form an increasing sequence of (110) < (100) < (101) < (001), demonstrating (110) is the most thermodynamically stable surface of cassiterite. The interaction strengths of the oleate ion (OL-), OH-, and H2O on the SnO2 (110) face are in the order of H2O < OH- < OL-, which reveals that the OL- is able to replace the adsorbed H2O and OH- on the mineral surfaces. Mulliken population calculations and electron density difference analysis show that electrons transfer from the Sn atoms on the cassiterite (110) surface to the O atoms offered by carboxyl groups of oleate during the interaction. The populations of newly formed O1-Sn1 and O2-Sn2 bonds are 0.30 and 0.29, respectively, indicating that these two bonds are of a very low covalency. Density of states analysis reveals that the formation of an O1-Sn1 bond mainly results from the 5s and 5p orbitals of the Sn1 atom and the 2p orbital of the O1 atom.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据