4.5 Article

Electropolymerisation of Aniline on AZ91 Magnesium Alloy: The Effect of Coating Electrolyte Corrosiveness

期刊

METALS
卷 7, 期 12, 页码 -

出版社

MDPI AG
DOI: 10.3390/met7120533

关键词

magnesium alloy; polyaniline; corrosion

向作者/读者索取更多资源

In this study, polyaniline was coated on AZ91 magnesium alloy using an electropolymerisation technique, and the effect of corrosiveness of the coating electrolytes on the polymerisation and the coating performance were evaluated. Two electrolytes, i.e., aniline + sodium salicylate (PASS) and aniline + potassium hydroxide (PAPH), with different corrosiveness, were used for polyaniline coating on AZ91 magnesium alloy. Potentiodynamic polarisation results suggested that salicylic acid (C7H5NaO3) was more corrosive for the alloy than potassium hydroxide (KOH), which can be attributed to the difference in the pH of the electrolytes. The PASS electrolyte coating formed on the alloy was relatively thick (similar to 9 mu m) and exhibited scattered pore-like morphology, whereas the PAPH electrolyte coating was thin (similar to 3 mu m) and uniform. Fourier Transform Infrared (FTIR) spectroscopy analysis revealed that the PASS electrolyte coating corresponds to polyaniline, whereas the PAPH electrolyte coating showed weak polyaniline bands. The corrosion protection performance of the coatings was evaluated in chloride-containing solution. The potentiodynamic polarisation results suggested that the corrosion rate of the alloy decreased significantly with the PASS electrolyte coating, whereas the PAPH electrolyte coating was detrimental. The degree of protection (DP) provided by the PASS electrolyte coating was -83%. Post-corrosion analysis revealed higher corrosion attack in the PAPH electrolyte-coated alloy in comparison with the PASS electrolyte coated alloy. Thus, it can be concluded that the corrosiveness of the PASS coating electrolyte did not adversely affect the formation/performance of polyaniline on AZ91 magnesium alloy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据