3.8 Proceedings Paper

A Human-Computer Interface based on Electromyography Command-Proportional Control

出版社

SCITEPRESS
DOI: 10.5220/0006033300570064

关键词

Electromyography; Human-Computer Interface; Pattern Classification; Artificial Neural Networks

向作者/读者索取更多资源

Surface electromyographic (sEMG) signals represent a superposition of the motor unit action potentials that can be recorded by electrodes placed on the skin. Here we explore the use of an easy wearable sEMG bracelet for a remote interaction with a computer by means of hand gestures. We propose a humancomputer interface that allows simulating mouse clicks by separate gestures and provides proportional control with two degrees of freedom for flexible movement of a cursor on a computer screen. We use an artificial neural network (ANN) for processing sEMG signals and gesture recognition both for mouse clicks and gradual cursor movements. At the beginning the ANN goes through an optimized supervised learning using either rigid or fuzzy class separation. In both cases the learning is fast enough and requires neither special measurement devices nor specific knowledge from the end-user. Thus, the approach enables building of low-budget user-friendly sEMG solutions. The interface was tested on twelve healthy subjects. All of them were able to control the cursor and simulate mouse clicks. The collected data show that at the beginning users may have difficulties that are reduced with the experience and the cursor movement by hand gestures becomes smoother, similar to manipulations by a computer mouse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据