4.7 Article

THREE-DIMENSIONAL DISTRIBUTION OF EJECTA IN SUPERNOVA 1987A AT 10,000 DAYS

期刊

ASTROPHYSICAL JOURNAL
卷 833, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/833/2/147

关键词

supernovae: general; supernovae: individual (SN 1987A)

资金

  1. Swedish National Space Board
  2. NASA through grants from the Space Telescope Science Institute [13401, 13405]
  3. NASA [NAS5-26555]
  4. European Organization for Astronomical Research in the Southern Hemisphere, Chile (ESO Program) [094.D-0505(C)]
  5. Swedish Research Council
  6. Direct For Mathematical & Physical Scien
  7. Division Of Astronomical Sciences [1211196, 1516854] Funding Source: National Science Foundation
  8. STFC [ST/L003597/1] Funding Source: UKRI

向作者/读者索取更多资源

Due to its proximity, SN. 1987A offers a unique opportunity to directly observe the geometry of a stellar explosion as it unfolds. Here we present spectral and imaging observations of SN. 1987A obtained similar to 10,000 days after the explosion with HST/STIS and VLT/SINFONI at optical and near-infrared wavelengths. These observations allow us to produce the most detailed 3D map of Ha to date, the first 3D maps for [Ca II] lambda lambda 7292, 7324, [O I] lambda lambda 6300, 6364, and Mg. II lambda lambda 9218, 9244, as well as new maps for [Si I]+[Fe II] 1.644 mu m and He I 2.058 mu m. A comparison with previous observations shows that the [Si I]+[Fe II] flux and morphology have not changed significantly during the past ten years, providing evidence that this line is powered by Ti-44. The time evolution of Ha shows that it is predominantly powered by X-rays from the ring, in agreement with previous findings. All lines that have sufficient signal show a similar large-scale 3D structure, with a north-south asymmetry that resembles a broken dipole. This structure correlates with early observations of asymmetries, showing that there is a global asymmetry that extends from the inner core to the outer envelope. On smaller scales, the two brightest lines, Ha and [Si I]+[Fe II] 1.644 mu m, show substructures at the level of similar to 200-1000 km s(-1) and clear differences in their 3D geometries. We discuss these results in the context of explosion models and the properties of dust in the ejecta.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据