4.6 Article

Coherence and Coupling Functions Reveal Microvascular Impairment in Treated Hypertension

期刊

FRONTIERS IN PHYSIOLOGY
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2017.00749

关键词

hypertension; cardiovascular regulation; aging; heart rate variability; microvascular blood flow oscillations; non-linear oscillator; coherence analysis; coupling functions

资金

  1. Engineering and Physical Sciences Research Council, United Kingdom [EP/100999X1]
  2. EU project COSMOS [642563]
  3. Joint Research Council's New Dynamics of Aging program [RES-356-25-0006]
  4. Action Medical Research (UK) MASDA [GN1963]
  5. Slovenian Research Agency
  6. Department of Physics, Lancaster University
  7. EPSRC [EP/M006298/1, EP/I00999X/1] Funding Source: UKRI
  8. ESRC [ES/G03690X/1] Funding Source: UKRI
  9. Action Medical Research [1963] Funding Source: researchfish
  10. Economic and Social Research Council [ES/G03690X/1] Funding Source: researchfish
  11. Engineering and Physical Sciences Research Council [EP/M006298/1, EP/I00999X/1] Funding Source: researchfish

向作者/读者索取更多资源

The complex interactions that give rise to heart rate variability (HRV) involve coupled physiological oscillators operating over a wide range of different frequencies and length-scales. Based on the premise that interactions are key to the functioning of complex systems, the time-dependent deterministic coupling parameters underlying cardiac, respiratory and vascular regulation have been investigated at both the central and microvascular levels. Hypertension was considered as an example of a globally altered state of the complex dynamics of the cardiovascular system. Its effects were established through analysis of simultaneous recordings of the electrocardiogram (ECG), respiratory effort, and microvascular blood flow [by laser Doppler flowmetry (LDF)]. The signals were analyzed by methods developed to capture time-dependent dynamics, including the wavelet transform, wavelet-based phase coherence, non-linear mode decomposition, and dynamical Bayesian inference, all of which can encompass the inherent frequency and coupling variability of living systems. Phases of oscillatory modes corresponding to the cardiac (around 1.0Hz), respiratory (around 0.25 Hz), and vascular myogenic activities (around 0.1 Hz) were extracted and combined into two coupled networks describing the central and peripheral systems, respectively. The corresponding spectral powers and coupling functions were computed. The same measurements and analyses were performed for three groups of subjects: healthy young (Y group, 24.4 +/- 3.4 y), healthy aged (A group, 71.1 +/- 6.6 y), and aged treated hypertensive patients (ATH group, 70.3 +/- 6.7 y). It was established that the degree of coherence between low-frequency oscillations near 0.1 Hz in blood flow and in HRV time series differs markedly between the groups, declining with age and nearly disappearing in treated hypertension. Comparing the two healthy groups it was found that the couplings to the cardiac rhythm from both respiration and vascular myogenic activity decrease significantly in aging. Comparing the data from A and ATH groups it was found that the coupling from the vascular myogenic activity is significantly weaker in treated hypertension subjects, implying that the mechanisms of microcirculation are not completely restored by current anti-hypertension medications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据