4.3 Article

UNSTEADY MHD SLIP FLOW OF NON NEWTONIAN POWER-LAW NANOFLUID OVER A MOVING SURFACE WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY

期刊

出版社

AMER INST MATHEMATICAL SCIENCES-AIMS
DOI: 10.3934/dcdss.2018036

关键词

Nanofluids; power-law model; partial slip; magnetohydrodynamics; variable thermal conductivity

向作者/读者索取更多资源

In this paper, unsteady magnetohydrodynamic (MHD) boundary layer slip flow and heat transfer of power-law nanofluid over a nonlinear porous stretching sheet is investigated numerically. The thermal conductivity of the nanofluid is assumed as a function of temperature and the partial slip conditions are employed at the boundary. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power law nanofluid is first transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system is then solved numerically using shooting technique. Numerical results are presented in the form of graphs and tables and the effect of the power-law index, velocity and thermal slip parameters, nanofluid volume concentration parameter, applied magnetic field parameter, suction/injection parameter on the velocity and temperature profiles are examined from physical point of view. The boundary layer thickness decreases with increase in strength of applied magnetic field, nanoparticle volume concentration, velocity slip and the unsteadiness of the stretching surface. Whereas thermal boundary layer thickness increase with increasing values of magnetic parameter, nanoparticle volume concentration and velocity slip at the boundary.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据