3.8 Proceedings Paper

Purcell enhancement of emitting from the quantum-dot-in-nanowire structure surrounded by Au

期刊

出版社

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.2245852

关键词

Purcell factor; GaAs nanowire; Au shell; effective mode volume

向作者/读者索取更多资源

Single photon sources are key devices for quantum communication and quantum computation. Recently, photonic nanowires with an embedded quantum dot have demonstrated to provide remarkable extraction efficiency due to the axial waveguide configuration and nanocavity function of nanowire. However, for thin nanowires, stable modes cannot be supported, resulting in very poor Purcell factor which is an important parameter of single photon sources. In this paper, a novel single photon source structure with a high Purcell factor is proposed and simulated. The structure consists of a GaAs nanowire embedded with an InAs quantum dot surrounded by Au. The enhancement of the Purcell factor is simulated by finite difference time domain (FDTD) method. Without Au shell, the Purcell factor quickly drops as the diameter of nanowire decreases. When the diameter is decreased to 50 nm, the nanowire cannot support any stable modes, resulting in a rather low Purcell factor of 0.009. After the Au shell is introduced, the Purcell factor is dramatically enhanced, and the enhancement ratio increases as the nanowire diameter decreases. The highest enhancement ratio of 1028 can be obtained at a nanowire diameter of 25 nm and Au shell thickness of 75 nm. The enhancement of the Purcell factor is attributed to the decrease of the cavity effective mode volume, which is inversely proportion to the Purcell factor. This work may offer a way to achieve single photon sources with an ultra-small size and ultrahigh Purcell factor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据