4.6 Review

An Overview on Catalytic Hydrodeoxygenation of Pyrolysis Oil and Its Model Compounds

期刊

CATALYSTS
卷 7, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/catal7060169

关键词

biomass; pyrolysis oil; hydrodeoxygenation; catalysts

资金

  1. NSFC (Natural Science Foundation of China) [51476175, 51606205]
  2. national basic research program of china [2013CB228105]
  3. Chinese Academy of Sciences one hundred talented plan
  4. Beijing Municipal Key Discipline of Biomass Engineering

向作者/读者索取更多资源

Pyrolysis is considered the most promising way to convert biomass to fuels. Upgrading biomass pyrolysis oil is essential to produce high quality hydrocarbon fuels. Upgrading technologies have been developed for decades, and this review focuses on the hydrodeoxygenation (HDO). In order to declare the need for upgrading, properties of pyrolysis oil are firstly analyzed, and potential analysis methods including some novel methods are proposed. The high oxygen content of bio-oil leads to its undesirable properties, such as chemical instability and a strong tendency to re-polymerize. Acidity, low heating value, high viscosity and water content are not conductive to making bio-oils useful as fuels. Therefore, fast pyrolysis oils should be refined before producing deoxygenated products. After the analysis of pyrolysis oil, the HDO process is reviewed in detail. The HDO of model compounds including phenolics monomers, dimers, furans, carboxylic acids and carbohydrates is summarized to obtain sufficient information in understanding HDO reaction networks and mechanisms. Meanwhile, investigations of model compounds also make sense for screening and designing HDO catalysts. Then, we review the HDO of actual pyrolysis oil with different methods including two-stage treatment, co-feeding solvents and in-situ hydrogenation. The relative merits of each method are also expounded. Finally, HDO catalysts are reviewed in order of time. After the summarization of petroleum derived sulfured catalysts and noble metal catalysts, transitional metal carbide, nitride and phosphide materials are summarized as the new trend for their low cost and high stability. After major progress is reviewed, main problems are summarized and possible solutions are raised.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据