4.6 Article

High Photocurrent in Gated Graphene-Silicon Hybrid Photodiodes

期刊

ACS PHOTONICS
卷 4, 期 6, 页码 1506-1514

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsphotonics.7b00285

关键词

graphene; heterojunction; Schottky diode; photocurrent; inversion layer

资金

  1. European Research Council (ERC) [3017311]
  2. German Research Foundation [DFG LE 2440/1-2, GRK 1564]
  3. European regional funds (HEA2D) [EFRE-0800149]
  4. Spanish Ministry of Education, Culture and Sport (Salvador de Madariaga Program) [PRX16/00205]

向作者/读者索取更多资源

Graphene/silicon (G/Si) heterojunction based devices have been demonstrated as high responsivity photo detectors that are potentially compatible with semiconductor technology. Such G/Si Schottky junction diodes are typically in parallel with gated G/silicon dioxide (SiO2)/Si areas, where the graphene is contacted. Here, we utilize scanning photocurrent measurements to investigate the spatial distribution and explain the physical origin of photocurrent generation in these devices. We observe distinctly higher photocurrents underneath the isolating region of graphene on SiO2 adjacent to the Schottky junction of G/Si. A certain threshold voltage (VT) is required before this can be observed, and its origins are similar to that of the threshold voltage in metal oxide semiconductor field effect transistors. A physical model serves to explain the large photocurrents underneath SiO2 by the formation of an inversion layer in Si. Our findings contribute to a basic understanding of graphene/semiconductor hybrid devices which, in turn, can help in designing efficient optoelectronic devices and systems based on such 2D/3D heterojunctions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据