4.6 Article

Doped Silicon Nanocrystal Plasmonics

期刊

ACS PHOTONICS
卷 4, 期 4, 页码 963-970

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsphotonics.7b00026

关键词

silicon nanocrystals; quantum dots; plasmonics; plasmon hybridization

资金

  1. Army Office of Research under MURI [W911NF-12-10407]
  2. Robert A. Welch Foundation [C-1222]
  3. NSF through the UMN MRSEC [DMR-1420013]
  4. NSF
  5. [DE-ACO2-06CH11357]

向作者/读者索取更多资源

Doped semiconductor nanocrystals represent an exciting new type of plasmonic material with optical resonances in the infrared. Unlike noble metal nanoparticles, the plasmon resonance can be tuned by altering the doping density. Recently, it has been shown that silicon nanocrystals can be doped using phosphorus and boron resulting in highly tunable infrared plasmon resonances. Due to the band structure of silicon, doping with phosphorus contributes light (transverse) and heavy (longitudinal) electrons, while boron contributes light and heavy holes and one would expect two distinct plasmon branches. Here we develop a classical hybridization theory and a full quantum mechanical TDLDA approach for two-component carrier plasmas and show that the interaction between the two plasmon branches results in strongly hybridized plasmon modes. The antibonding mode where the two components move in phase is bright and depends sensitively on the doping densities. The low energy bonding mode with opposite charge alignment can only be observed in the quantum regime when strong Coulomb screening is present. The theoretical results are in good agreement with the experimental data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据