4.6 Article

Generated Carrier Dynamics in V-Pit-Enhanced InGaN/GaN Light-Emitting Diode

期刊

ACS PHOTONICS
卷 5, 期 3, 页码 820-826

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsphotonics.7b00944

关键词

InGaN; efficiency droop; light-emitting diode; carrier dynamics; time-resolved spectroscopy

资金

  1. King Abdullah University of Science and Technology

向作者/读者索取更多资源

We investigate the effects of V-pits on the optical properties of a state-of-the-art, highly efficient, blue InGaN/GaN multi-quantum-well (MQW) light-emitting diode (LED) with a high internal quantum efficiency (IQE) of > 80%. The LED is structurally enhanced by incorporating a pre-MQW InGaN strain-relief layer with low InN content and a patterned sapphire substrate. For comparison, a conventional (unenhanced) InGaN/GaN MQW LED (with an IQE of 46%) grown under similar conditions was subjected to the same measurements. Scanning transmission electron microscopy reveals the absence of V-pits in the unenhanced LED, whereas in the enhanced LED, V-pits with {10-11} facets, emerging from threading dislocations (TDs), were prominent. Cathodoluminescence mapping reveals the luminescence properties near the V-pits, showing that the formation of V-pit defects can encourage the growth of defect-neutralizing barriers around TD defect states. The diminished contribution of TDs in the MQWs allows indium-rich localization sites to act as efficient recombination centers. Photoluminescence and time-resolved spectroscopy measurements suggest that the V-pits play a significant role in the generated carrier rate and droop mechanism, showing that the quantum-confined Stark effect is suppressed at low generated carrier density, after which the carrier dynamics and droop are governed by the carrier overflow effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据