4.6 Article

Understanding the Different Exciton-Plasmon Coupling Regimes in Two-Dimensional Semiconductors Coupled with Plasmonic Lattices: A Combined Experimental and Unified Equation of Motion Approach

期刊

ACS PHOTONICS
卷 5, 期 1, 页码 192-204

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsphotonics.7b00672

关键词

2D semiconductor; exciton-plasmon; polariton; strong coupling; Purcell enhancement; Fano resonance; MoS2; WS2

资金

  1. NSF under NSF 2-DARE Program [EFMA-1542879]
  2. NSF-MRSEC (LRSM) [DMR11-20901]
  3. U.S. Army Research Office [W911NF-12-R-0012-03]
  4. National Natural Science Foundation of China [51525202]
  5. Emerging Frontiers & Multidisciplinary Activities
  6. Directorate For Engineering [1542879] Funding Source: National Science Foundation

向作者/读者索取更多资源

We study exciton-plasmon coupling in two-dimensional semiconductors coupled with Ag plasmonic lattices via angle-resolved reflectance spectroscopy and by solving the equations of motion (EOM) in a coupled oscillator model accounting for all the resonances of the system. Five resonances are considered in the EOM model: semiconductor A and B excitons, localized surface plasmon resonances (LSPRs) of plasmonic nanostructures, and the lattice diffraction modes of the plasmonic array. We investigated the exciton-plasmon coupling in different 2D semiconductors and plasmonic lattice geometries, including monolayer MoS2 and WS2 coupled with Ag nanodisk and bowtie arrays and examined the dispersion and line shape evolution in the coupled systems via the EOM model with different exciton-plasmon coupling parameters. The EOM approach provides a unified description of the exciton-plasmon interaction in the weak, intermediate, and strong coupling cases with correctly explaining the dispersion and lineshapes of the complex system. This study provides a much deeper understanding of light-matter interactions in multilevel systems in general and will be useful to instruct the design of novel two-dimensional exciton-plasmonic devices for a variety of optoelectronic applications with precisely tailored responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据