3.8 Proceedings Paper

Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation

出版社

IEEE
DOI: 10.1109/CVPR.2016.619

关键词

-

资金

  1. Fonds de Recherche du Quebec Nature et Technologies (FRQNT)
  2. NASA Space Technology Research Fellowship

向作者/读者索取更多资源

Deep neural networks with alternating convolutional, max-pooling and decimation layers are widely used in state of the art architectures for computer vision. Max-pooling purposefully discards precise spatial information in order to create features that are more robust, and typically organized as lower resolution spatial feature maps. On some tasks, such as whole-image classification, max-pooling derived features are well suited; however, for tasks requiring precise localization, such as pixel level prediction and segmentation, max-pooling destroys exactly the information required to perform well. Precise localization may be preserved by shallow convnets without pooling but at the expense of robustness. Can we have our max-pooled multilayered cake and eat it too? Several papers have proposed summation and concatenation based methods for combining upsampled coarse, abstract features with finer features to produce robust pixel level predictions. Here we introduce another model-dubbed Recombinator Networks where coarse features inform finer features early in their formation such that finer features can make use of several layers of computation in deciding how to use coarse features. The model is trained once, end-to-end and performs better than summation-based architectures, reducing the error from the previous state of the art on two facial keypoint datasets, AFW and AFLW, by 30% and beating the current state-of-the-art on 300W without using extra data. We improve performance even further by adding a denoising prediction model based on a novel convnet formulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据