4.5 Review

Metagenomics of microbial and viral life in terrestrial geothermal environments

期刊

出版社

SPRINGER
DOI: 10.1007/s11157-017-9435-0

关键词

Hyperthermophiles; Geothermal environments; Microbial and viral metagenomics; CRISPR; Enzyme discovery

资金

  1. Italian Space Agency [BIOPOLIS: PON03PE_00107_1 CUP: E48C14000030005, 2014-026-R.0]

向作者/读者索取更多资源

Geothermally heated regions of Earth, such as terrestrial volcanic areas (fumaroles, hot springs, and geysers) and deep-sea hydrothermal vents, represent a variety of different environments populated by extremophilic archaeal and bacterial microorganisms. Since most of these microbes thriving in such harsh biotopes, they are often recalcitrant to cultivation; therefore, ecological, physiological and phylogenetic studies of these microbial populations have been hampered for a long time. More recently, culture-independent methodologies coupled with the fast development of next generation sequencing technologies as well as with the continuous advances in computational biology, have allowed the production of large amounts of metagenomic data. Specifically, these approaches have assessed the phylogenetic composition and functional potential of microbial consortia thriving within these habitats, shedding light on how extreme physico-chemical conditions and biological interactions have shaped such microbial communities. Metagenomics allowed to better understand that the exposure to an extreme range of selective pressures in such severe environments, accounts for genomic flexibility and metabolic versatility of microbial and viral communities, and makes extreme-and hyper-thermophiles suitable for bioprospecting purposes, representing an interesting source for novel thermostable proteins that can be potentially used in several industrial processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据