4.8 Article

Engineered architecture of nitrogenous graphene encapsulating porous carbon with nano-channel reactors enhancing the PEM fuel cell performance

期刊

NANO ENERGY
卷 42, 期 -, 页码 249-256

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nanoen.2017.10.051

关键词

In-situ graphene; Porous carbon spheres; Oxygen reduction reaction; Catalyst; Fuel cells

资金

  1. University of Waterloo
  2. Automotive Partnership Canada (APC) through the Natural Sciences and Engineering Research Council of Canada (NSERC) [APCPJ 417858-11]

向作者/读者索取更多资源

Nanoscale architecturing of platinum group metal-free (PGM-free) electrocatalysts is expected to dramatically improve the overall catalytic performance for oxygen reduction reaction (ORR). Desired structures and morphologies for boosting active site density and enhancing mass and charge transfer are essential for developing next-generation PGM-free electrocatalysts. Herein, we report the design of a M-N-C type catalyst consisting of 3-dimensional graphitic meso-porous carbon spheres wrapped with 2-dimensional graphenized sheets. This heterostructure comprises resultant large electroactive surface area, abundant pore channels, and tuned chemical structures, which provide improved electrocatalytic performance. Meanwhile, these pore structures can be regarded as nano-channel reactors to catalyze ORR with easily accessible active sites, effective mass transfer, and smooth charge transfer. The obtained catalyst delivers a high maximum power density of 0.83 W cm(-2) in a single H-2-O-2 fuel cell measurement, ranking it as one of the most promising PGM-free catalysts in proton exchange membrane fuel cells (PEMFCs). Moreover, reasonable fuel cell stability was also observed through accelerated degradation testing. This work provides a new avenue for PGM-free catalysts design that can be a step towards practical commercial of PEMFCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据