4.8 Article

Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference

期刊

NANO ENERGY
卷 40, 期 -, 页码 663-672

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2017.08.061

关键词

Wearable; Thermoelectric; Solar absorber; Dispenser printing; Self-powered device

资金

  1. R & D Convergence Program of NST (National Research Council of Science and Technology) of Republic of Korea [1711022168]
  2. KIST-UNIST Partnership Program [1.170086.01/2.160482.01]

向作者/读者索取更多资源

Converting body heat into electricity using flexible thermoelectric generators can be useful for self-powered wearable electronic devices. However, the temperature difference that can be obtained by body heat is insufficient, which limits its practical applications. In this study, we present a wearable solar thermoelectric generator driven by a significantly high temperature difference created by introducing a local solar absorber and thermoelectric legs on a polyimide substrate. The solar absorber is a five-period Ti/MgF2 superlattice, in which the structure and thickness of each layer was designed for optimal absorption of sunlight. The thermoelectric legs were prepared by dispenser printing with an ink consisting of mechanically alloyed BiTe-based powders and an Sb2Te3-based sintering additive dispersed in glycerol. Thermoelectric p- and n-type legs have electrical conductivities of similar to 25,000 S m(-1) with Seebeck coefficients of 166.37 and - 116.38 mu V K-1, respectively. When exposed to sunlight, a wearable solar thermoelectric generator comprising 10 pairs of p-n legs has an open-circuit voltage of 55.15 mV and an output power of 4.44 mu W. The temperature difference is as high as 20.9 degrees C, which is much higher than the typical temperature differences of 1.5-4.1 degrees C of wearable thermoelectric generators driven by body heat. The wearable solar thermoelectric generators have been demonstrated on various surfaces exposed to sunlight, such as clothes or windows.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据