4.8 Article

Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors

期刊

NANO ENERGY
卷 35, 期 -, 页码 331-340

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nanoen.2017.04.007

关键词

Plasma synthesis; Transition metal phosphides; NiCoP; Asymmetric supercapacitors; Energy storage

资金

  1. King Abdullah University of Science and Technology (KAUST)

向作者/读者索取更多资源

We report a versatile route for the preparation of metal phosphides using PH3 plasma for supercapacitor applications. The high reactivity of plasma allows rapid and low temperature conversion of hydroxides into monometallic, bimetallic, or even more complex nanostructured phosphides. These same phosphides are much more difficult to synthesize by conventional methods. Further, we present a general strategy for significantly enhancing the electrochemical performance of monometallic phosphides by substituting extrinsic metal atoms. Using NiCoP as a demonstration, we show that the Co substitution into Ni2P not only effectively alters the electronic structure and improves the intrinsic reactivity and electrical conductivity, but also stabilizes Ni species when used as supercapacitor electrode materials. As a result, the NiCoP nanosheet electrodes achieve high electrochemical activity and good stability in 1 M KOH electrolyte. More importantly, our assembled NiCoP nanoplates//graphene films asymmetric supercapacitor devices can deliver a high energy density of 32.9 Wh kg(-1) at a power density of 1301 W kg(-1), along with outstanding cycling performance (83% capacity retention after 5000 cycles at 20 A g(-1)). This activity outperforms most of the NiCo-based materials and renders the NiCoP nanoplates a promising candidate for capacitive storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据