3.8 Proceedings Paper

Angelix: Scalable Multiline Program Patch Synthesis via Symbolic Analysis

出版社

IEEE
DOI: 10.1145/2884781.2884807

关键词

Program repair; Scalable semantics-based repair; Multi-line patch; Angelic forest

资金

  1. National Research Foundation, Prime Minister's Office, Singapore under its National Cybersecurity RD Program [NRF2014NCR-NCR001-21]

向作者/读者索取更多资源

Since debugging is a time-consuming activity, automated program repair tools such as GenProg have garnered interest. A recent study revealed that the majority of GenProg repairs avoid bugs simply by deleting functionality. We found that SPR, a state-of-the-art repair tool proposed in 2015, still deletes functionality in their many \ plausible repairs. Unlike generate-and-validate systems such as GenProg and SPR, semantic analysis based repair techniques synthesizea repair based on semantic information of the program. While such semantics-based repair methods show promise in terms of quality of generated repairs, their scalability has been a concern so far. In this paper, we present Angelix, a novel semantics-based repair method that scales up to programs of similar size as are handled by search-based repair tools such as GenProg and SPR. This shows that Angelix is more scalable than previously proposed semantics based repair methods such as SemFix and DirectFix. Furthermore, our repair method can repair multiple buggy locations that are dependent on each other. Such repairs are hard to achieve using SPR and GenProg. In our experiments, Angelix generated repairs from large-scale real-world software such as wireshark and php, and these generated repairs include multi-location repairs. We also report our experience in automatically repairing the well-known Heartbleed vulnerability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据