4.6 Article

Dichotomy in ultrafast atomic dynamics as direct evidence of polaron formation in manganites

期刊

NPJ QUANTUM MATERIALS
卷 1, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/npjquantmats.2016.26

关键词

-

资金

  1. Materials Science and Engineering Divisions, Office of Basic Energy Sciences of the U.S. Department of Energy [DESC0012704]
  2. BNL Laboratory Directed Research and Development (LDRD)
  3. Max Planck POSTECH/KOREA Research Initiative Program through NRF of Korea - MSIP [2011-0031558]
  4. DOE [DOE: DE-FG02-07ER46382]

向作者/读者索取更多资源

Polaron transport, in which electron motion is strongly coupled to the underlying lattice deformation or phonons, is crucial for understanding electrical and optical conductivities in many solids. However, little is known experimentally about the dynamics of individual phonon modes during polaron motion. It remains elusive whether polarons have a key role in materials with strong electronic correlations. Here we report the use of a new experimental technique, ultrafast MeV-electron diffraction, to quantify the dynamics of both electronic and atomic motions in the correlated LaSr2Mn2O7. Using photoexcitation to set the electronic system in motion, we find that Jahn-Teller-like O, Mn4+ and La/Sr displacements dominate the lattice response and exhibit a dichotomy in behaviour-overshoot-and-recovery for one sublattice versus normal behaviour for the other. This dichotomy, attributed to slow electronic relaxation, proves that polaron transport is a key process in doped manganites. Our technique promises to be applicable for specifying the nature of electron-phonon coupling in complex materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据