4.3 Article

Application of a systems pharmacology model for translational prediction of hERG-mediated QTc prolongation

期刊

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/prp2.270

关键词

Drug safety biomarkers; in vitro-in vivo correlation; mechanistic pharmacodynamic modeling; QTc interval; translational research

资金

  1. Dutch Top Institute Pharma (TIPharma) PK-PD platform 2.0.

向作者/读者索取更多资源

Drug-induced QTc interval prolongation (Delta QTc) is a main surrogate for proarrhythmic risk assessment. A higher in vivo than in vitro potency for hERG-mediated QTc prolongation has been suggested. Also, in vivo between-species and patient populations' sensitivity to drug-induced QTc prolongation seems to differ. Here, a systems pharmacology model integrating preclinical in vitro (hERG binding) and in vivo (conscious dog Delta QTc) data of three hERG blockers (dofetilide, sotalol, moxifloxacin) was applied (1) to compare the operational efficacy of the three drugs in vivo and (2) to quantify dog-human differences in sensitivity to drug-induced QTc prolongation (for dofetilide only). Scaling parameters for translational in vivo extrapolation of drug effects were derived based on the assumption of system-specific myocardial ion channel densities and transduction of ion channel block: the operational efficacy (transduction of hERG block) in dogs was drug specific (1-19% hERG block corresponded to >= 10 msec Delta QTc). System-specific maximal achievable Delta QTc was estimated to 28% from baseline in both dog and human, while % hERG block leading to half-maximal effects was 58% lower in human, suggesting a higher contribution of hERG-mediated potassium current to cardiac repolarization. These results suggest that differences in sensitivity to drug-induced QTc prolongation may be well explained by drug-and system-specific differences in operational efficacy (transduction of hERG block), consistent with experimental reports. The proposed scaling approach may thus assist the translational risk assessment of QTc prolongation in different species and patient populations, if mediated by the hERG channel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据