3.8 Proceedings Paper

Fabrication of an Omnidirectional 2D Photonic Crystal Emitter for Thermophotovoltaics

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1742-6596/773/1/012037

关键词

-

资金

  1. National Science Foundation (NSF) [ECS-0335765]
  2. Solid-State Solar-Thermal Energy Conversion Center (S3TEC), an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0001299 / DE-FG02-09ER46577]
  3. U.S. Army Research Laboratory
  4. U.S. Army Research Office through the Institute for Soldier Nanotechnologies [W911NF-13-D-0001]

向作者/读者索取更多资源

In a thermophotovoltaic (TPV) system, a heat source brings an emitter to incandescence and the spectrally confined thermal radiation is converted to electricity by a low-bandgap photovoltaic (PV) cell. Efficiency is dominated by the emitter's ratio of in-band emissivity (convertible by the PV cell) to out-of-band emissivity (inconvertible). Two-dimensional photonic crystals (PhCs) offer high in-band emissivity and low out-of-band emissivity at normal incidence, but have reduced in-band emissivity off-normal. According to Lambert's law, most thermal radiation occurs off-normal. An omnidirectional PhC capable of high in-band emissivity at all angles would increase total in-band power by 55% at 1200 degrees C. In this work, we present the first experimental demonstration an omnidirectional hafnia-filled 2D tantalum PhC emitter suitable for TPV applications such as combustion, radioisotope, and solar TPV. Dielectric filling improved the hemispherical performance without sacrificing stability or ease of fabrication. The numerical simulations, fabrication processes, and optical and thermal characterizations of the PhC are presented in this paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据