4.0 Article

Intercomparison of different physics schemes in the WRF model over the Asian summer monsoon region

期刊

ATMOSPHERIC AND OCEANIC SCIENCE LETTERS
卷 9, 期 3, 页码 169-177

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/16742834.2016.1158618

关键词

WRF model; precipitation; temperature; PBL scheme; microphysics scheme; cumulus parameterization scheme

资金

  1. National Natural Science Foundation of China [41275108]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA11010404]

向作者/读者索取更多资源

Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, mainland China, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon climate. The objective of this study is to identify a reasonable configuration of physical parameterization schemes to simulate the precipitation and temperature in this large area. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YSU) PBL schemes, the WSM3 and WSM5 microphysics schemes, and the Betts-Miller-Janjic (BMJ) and Tiedtke cumulus schemes are compared through simulation of the regional climate of summer 2008. All cases exhibit a similar spatial distribution of temperature as observed, and the spatial correlation coefficients are all higher than 0.95. The cases combining MYJ, WSM3/WSM5, and BMJ have the smallest biases of temperature. The choice of PBL scheme has a significant effect on precipitation in such a large area. The cases with MYJ reproduce a better distribution of rain belts, while YSU strongly overestimates the precipitation intensity. The precipitation simulated using WSM3 is similar to that using WSM5. The BMJ cumulus scheme combined with the MYJ PBL scheme has a smaller bias of precipitation. However, the Tiedtke scheme reproduces the precipitation pattern better, especially over the ITCZ.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据