4.6 Article

Optimal power flow using moth swarm algorithm

期刊

ELECTRIC POWER SYSTEMS RESEARCH
卷 142, 期 -, 页码 190-206

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.epsr.2016.09.025

关键词

Optimal power flow; Security constraints; Contingency management; Population diversity crossover; Associative learning mechanism

向作者/读者索取更多资源

This work presents a novel Moth Swarm Algorithm (MSA), inspired by the orientation of moths towards moonlight to solve constrained Optimal Power Flow (OPF) problem. The associative learning mechanism with immediate memory and population diversity crossover for Levy-mutation have been proposed to improve exploitation and exploration ability, respectively, in addition to adaptive Gaussian walks and spiral motion. The MSA and four heuristic search algorithms are carried out on the IEEE 30-bus, 57-bus and IEEE 118-bus power systems. These approaches are applied to optimize the control variables such as real power generations, load tap changer ratios, bus voltages and shunt capacitance values under several power system constraints. Fourteen different cases are executed on different curves of fuel cost (e.g., quadratic, valve-loading effects, multi-fuels options), environmental pollution emission, active power loss, voltage profile and voltage stability for contingency and normal conditions, in single and multi objective optimization space. Furthermore, the impacts of the updating mechanism of optimizers on those objective functions are investigated. The effectiveness and superiority of the MSA have been demonstrated in comparison with many recently published OPF solution (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据