4.7 Article

Can batch or semi-batch processes save energy in reverse-osmosis desalination?

期刊

DESALINATION
卷 402, 期 -, 页码 109-122

出版社

ELSEVIER
DOI: 10.1016/j.desal.2016.09.028

关键词

Batch reverse osmosis; Semi-batch closed-circuit reverse osmosis; Staged reverse osmosis; Energy of desalination; Process design

资金

  1. National Science Foundation through the Engineering Research Center for Nanotechnology-Enabled Water Treatment [ERC-1449500]
  2. National Science Foundation [CBET 1437630]
  3. Directorate For Engineering
  4. Div Of Chem, Bioeng, Env, & Transp Sys [1437630] Funding Source: National Science Foundation

向作者/读者索取更多资源

Energy savings in reverse osmosis (RO) are highly constrained by the design of conventional processes, for which the minimum practical energy of desalination substantially exceeds the thermodynamic minimum. Batch processes can theoretically approach the thermodynamic minimum, suggesting the possibility for further energy savings. In this study, we aim to quantify what energy reductions may be possible for batch-like processes when process inefficiencies such as frictional losses and concentration polarization are included. We first introduce a practical batch process that utilizes energy recovery devices and an unpressurized feed tank. We also consider a less practical pressurized-tank scenario, as well as semi-batch (closed-circuit) RO. We then derive analytical approximations and conduct numerical modeling to compare the energy requirements of batch, semi-batch, and staged RO processes under realistic conditions. Through this analysis, we find that practical batch-like processes and processes with increased staging offer comparable and significant energy savings. For example, semi-batch RO and two-stage RO would save 13% and 15% energy, respectively, over one-stage seawater RO at 50% recovery. We conclude with a discussion of other important factors, such as capital costs and process robustness and flexibility, that will affect the implementation of batch, semi-batch, and staged processes. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据