4.6 Article

Probing the shape-specific electrochemical properties of cobalt oxide nanostructures for their application as selective and sensitive non-enzymatic glucose sensors

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 5, 期 26, 页码 6497-6505

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7tc01411b

关键词

-

资金

  1. Department of Science and Technology, Government of India [SR/FTP/PS-157/2011, SB/FT/CS-155/2012, FRS/34/2012-2013/APH, FRS/43/2013-2014/AC]
  2. Indian Institute of Technology (ISM), Dhanbad under Faculty Research Scheme
  3. Board of Research in Nuclear Sciences (BRNS) , Department of Atomic Energy, Government of India [34/14/21/2014-BRNS/0295]
  4. Indian Institute of Technology (ISM), Dhanbad

向作者/读者索取更多资源

In this work, a selective and sensitive non-enzymatic electrochemical glucose sensor was developed using cobalt oxide nanoflowers (NF). Herein, for the first time, shape-specific electrochemical properties of cobalt oxide nanostructures were studied by synthesizing the spherical nanoparticle (NP), porous nanorod (NR) and nanoflower (NF) shapes of cobalt oxide by easy and facile wet-chemical processes. Cobalt oxide nanoflowers showed high surface-to-volume ratio with superior electrocatalytic behavior, and therefore, are more suited for designing a selective and sensitive non-enzymatic glucose sensor. All the as-synthesized samples are characterized using different spectroscopic and microscopic techniques. Prior to sensor fabrication, the nanostructures are further analyzed using voltammetric techniques for the determination of electroactive/real surface area and electrode parameters. The cobalt oxide nanoflowers exhibit maximum electrocatalytic activity owing to the larger exposure area resulting from its unique 3-D hierarchical architecture with interconnected nanosized petals. The influence of supporting electrolyte, electrolyte concentration and applied potential on the electrooxidation of glucose on cobalt oxide nanoflower-modified pencil graphite electrode (NF-PGE) sensor is examined, and the mechanism is explained. The developed amperometric glucose sensor exhibits excellent anti-interfering property and two wide linear ranges of 5 to 60 mu M and 0.2 to 3.0 mM, with high sensitivities of 693.02 mu A mM(-1) cm(-2) and 228.03 mu A mM(-1) cm(-2) and detection limits (LOD) as low as 0.04 mu M and 0.14 mu M, respectively. Furthermore, the practical feasibility of the developed sensor was tested for the quantification of glucose in various commercially available soft drinks, fresh fruit extracts, and human blood samples via standard addition (SA) method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据