4.7 Article

Evaluation of water-limited cropping systems in a semi-arid climate using DSSAT-CSM

期刊

AGRICULTURAL SYSTEMS
卷 150, 期 -, 页码 86-98

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.agsy.2016.10.007

关键词

DSSAT-CSM; Crop rotation; Water productivity; Deficit irrigation; Corn; Wheat; Grain sorghum

资金

  1. USDA Ogallala Aquifer Project [58-3090-5-007]
  2. USDA Project through NIFA Water for Agriculture Challenge Area [2016-68007-25066]

向作者/读者索取更多资源

Water is the major factor limiting crop production in western Kansas due to declining groundwater levels in the Ogallala aquifer resulting from withdrawals for irrigation exceeding recharge rates coupled with erratic semi-arid rainfall. Study objectives were to assess yield and water productivity of water limited cropping systems in western Kansas using DSSAT-CSM (Decision Support System for Agrotechnology Transfer Cropping Systems Model). The cropping systems evaluated included continuous (corn, wheat, and grain sorghum) and rotation (corn-wheat, corn-wheat-grain sorghum, and corn-wheat-grain sorghum-corn). Results showed that the model adequately reproduced measured days to flowering and maturity as well as yield and aboveground biomass of all three crops. Crop rotation improved water productivity of corn. Under deficit irrigation, corn in rotation produced higher yields, crop water productivity, and irrigation water use efficiency compared to continuous corn, implying that crop rotation is a better option under limited well capacities. Under full irrigation, yield and water productivity of continuous wheat were lower than wheat in rotation. In contrast, continuous wheat yields under deficit irrigation were better than under crop rotation. Deficit irrigation substantially improved irrigation water use efficiency of grain sorghum under both continuous and crop rotations. Long-term average grain sorghum yields under rotation were higher than those of continuous grain sorghum. Indicating grain sorghum should be grown in rotation under deficit irrigation. This research did not simulate the impacts of pests, weeds and diseases, hail and freeze damage on crop yield. However, the study identifies cropping systems that are more likely to produce highest water productivity under semi-arid climate similar to that in western Kansas. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据