4.7 Article

A CONSISTENT RETRIEVAL ANALYSIS OF 10 HOT JUPITERS OBSERVED IN TRANSMISSION

期刊

ASTROPHYSICAL JOURNAL
卷 834, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/834/1/50

关键词

Methods: data analysis; planets and satellites: atmospheres; radiative transfer

资金

  1. European Research Council [617119]
  2. Science and Technology Facilities Council
  3. Leverhulme Trust [RPG-2012-661]
  4. Science and Technology Facilities Council [ST/K00106X/1]
  5. European Research Council under the European Unions Seventh Framework Programme (FP7)/ERC grant [336792]
  6. STFC [ST/K00106X/1, ST/N000919/1] Funding Source: UKRI
  7. Science and Technology Facilities Council [ST/N000919/1, ST/K00106X/1] Funding Source: researchfish

向作者/读者索取更多资源

We present a consistent optimal estimation retrieval analysis of 10. hot Jupiter exoplanets, each with transmission spectral data spanning the visible to near-infrared wavelength range. Using the NEMESIS radiative transfer and retrieval tool, we calculate a range of possible atmospheric states for WASP-6b, WASP-12b, WASP-17b, WASP-19b, WASP-31b, WASP-39b, HD 189733b, HD 209458b, HAT-P-1b, and HAT-P-12b. We find that the spectra of all 10. planets are consistent with the presence of some atmospheric aerosol; WASP-6b, WASP-12b, WASP-17b, WASP-19b, HD 189733b, and HAT-P-12b are all fit best by Rayleigh scattering aerosols, whereas WASP-31b, WASP-39b and HD 209458b are better represented by a gray cloud model. HAT-P-1b has solutions that fall into both categories. WASP-6b, HAT-P-12b, HD 189733b, and WASP-12b must have aerosol extending to low atmospheric pressures (below 0.1 mbar). In general, planets with equilibrium temperatures between 1300 and 1700 K are best represented by deeper, gray cloud layers, whereas cooler or hotter planets are better fit using high Rayleigh scattering aerosol. We find little evidence for the presence of molecular absorbers other than H2O. Retrieval methods can provide a consistent picture across a range of hot Jupiter atmospheres with existing data, and will be a powerful tool for the interpretation of James Webb Space Telescope observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据