4.6 Article

Bimetallic Cu-Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 5, 期 9, 页码 4421-4429

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta10476b

关键词

-

资金

  1. National Natural Science Foundation of China [21376247, 21506225, 21573240]
  2. Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences [COM2015A001]

向作者/读者索取更多资源

Shape-controlled synthesis of bimetallic nanomaterials is critical to the improvement of their catalytic performance for a given catalytic reaction. In this work, we demonstrate a simple and effective approach for the synthesis of bimetallic Cu-Pd alloy multipods mainly consisting of tripods, tetrapods, pentapods, and hexapods via combining the galvanic replacement reaction (GRR) between pre-synthesized Cu template nanoparticles and Pd2+ ion precursors with the reduction of the Cu2+ ions generated in the GRR by oleylamine. Benefiting simultaneously from their unique multipod structure with abundant active edges/corner atoms, electron transfer from Cu to Pd in alloys that enhances their CO tolerance, and the lattice contraction of Pd imposed by Cu, which weakens the binding strength between Pd and reaction intermediates, these Cu-Pd alloy multipods show remarkable improvement of their electrocatalytic performance not only for the oxidation of formic acid but also for the reduction of oxygen when benchmarked against spherical Cu-Pd alloy nanoparticles and commercial Pd/C catalysts. The strategy in this work may provide a method to synthesize other bimetallic alloy multipods to achieve specific functions for various applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据