4.6 Article

Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium-sulfur batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 5, 期 19, 页码 9412-9417

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta01981e

关键词

-

资金

  1. National Natural Science Foundation of China [51402100, 21573066]
  2. Provincial Natural Science Foundation of Hunan [2016JJ1006, 2016TP1009]

向作者/读者索取更多资源

The development of lithium-sulfur is impeded by two main obstacles: the dissolution of lithium polysulfides and the pristine insulation of sulfur. Here, high energy ball-milling with the assistance of dielectric barrier discharge plasma was used in synthesis of ultrafine sulfur particles anchored on in situ exfoliated graphene for Li-S batteries. The ultrafine sulfur particles formed not only afford more sufficient electrical contact towards graphene support, but also alleviate volume expansion compared with bulk sulfur. On the other hand, with robust etching function of dielectric barrier discharge plasma, little oxygen-doping was observed in exfoliated few-layer graphene, offering sufficient capture sites towards lithium polysulfides. The ultrafine sulfur/graphene composite with little oxygen-doping exhibits superior cycling performance and rate capability in contrast to the control samples without the exertion of dielectric barrier discharge plasma. Little capacity degradation rate of 0.07% per cycle was achieved at 0.5C over 500 cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据