4.6 Article

Carbon-coated Li4Ti5O12 nanoparticles with high electrochemical performance as anode material in sodium-ion batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 5, 期 22, 页码 10902-10908

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta03173d

关键词

-

资金

  1. national key research and development plan [2016YFB0901503]

向作者/读者索取更多资源

Sodium-ion batteries have been considered as promising alternatives to the current lithium-ion batteries owing to their low cost and abundant raw material. The major challenge of their practical implementation is the lack of favourable anode material. Spinel Li4Ti5O12 has been regarded as a potential anode material for its superior capability of sodium-ion storage and relatively appropriate operating voltage. However, the low intrinsic ionic and electronic conductivity of spinel Li4Ti5O12 still remains as its major drawback. Herein, carbon-coated Li4Ti5O12 nanoparticles have been synthesized through a solid-state reaction and a chemical vapour deposition method and used as an anode material for sodium-ion battery. The composite structure demonstrates excellent stability and an initial discharge specific capacity of 120.1 mA h g(-1), which is maintained at 101.5 mA h g(-1) after 500 cycles corresponding to 85% of capacity retention at a current density of 0.1 A g(-1). In addition, a full cell was fabricated with carbon-coated Na3V2(PO4)(3) as a positive electrode, which displayed discharge specific capacities of 138.5 mA h g(-1) that was maintained at 114.7 mA h g(-1) after 50 cycles at a current density of 0.05 A g(-1), and the capacity retention was 82.8%. The results indicated that the Li4Ti5O12 nanoparticle with a carbon layer shows a promising electrochemical performance as anode materials in sodium-ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据