3.8 Article Book Chapter

Resisting Resistance

期刊

ANNUAL REVIEW OF CANCER BIOLOGY, VOL 1
卷 1, 期 -, 页码 203-221

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev-cancerbio-042716-094839

关键词

cancer treatment; combination therapy; targeted therapy; evolutionary dynamics; evolution; mathematical biology

类别

向作者/读者索取更多资源

Targeted therapies, immunotherapies, and improved chemotherapies are being developed to reduce the suffering and mortality that come from human cancer. Although these approaches, and in particular combinations of them, are expected to succeed eventually to a large degree, they all suffer one obstacle: Populations of replicating cells move away-typically in a high-dimensional space-from any opposing selection pressure they encounter. They evolve resistance. It is possible, however, to develop a precise mathematical understanding of the problem and to design treatment strategies that prevent resistance if possible or manage resistance otherwise. In this article, we present the fundamental equations that characterize the evolution of resistance. We provide formulas for the probability that resistant cells exist at the start of therapy, for the average number and sizes of resistant clones, and for the probability of successful combination treatment. We also demonstrate that developing new therapies that only maximize the killing rate of cancer cells may not be optimal, and that instead the parameters determining the fraction of resistant cells and their growth rate have a larger effect on the long-term control of cancer. These mathematical tools inform the search process for optimal therapies that aim to cure cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据