3.8 Proceedings Paper

Deep Learning with Low Precision by Half-wave Gaussian Quantization

出版社

IEEE
DOI: 10.1109/CVPR.2017.574

关键词

-

资金

  1. NSF [IIS1208522, IIS1637941]
  2. Direct For Computer & Info Scie & Enginr
  3. Div Of Information & Intelligent Systems [1208522, 1637941] Funding Source: National Science Foundation

向作者/读者索取更多资源

The problem of quantizing the activations of a deep neural network is considered. An examination of the popular binary quantization approach shows that this consists of approximating a classical non-linearity, the hyperbolic tangent, by two functions: a piecewise constant sign function, which is used in feedforward network computations, and a piecewise linear hard tanh function, used in the backpropagation step during network learning. The problem of approximating the widely used ReLU non-linearity is then considered. An half-wave Gaussian quantizer (HWGQ) is proposed for forward approximation and shown to have efficient implementation, by exploiting the statistics of of network activations and batch normalization operations. To overcome the problem of gradient mismatch, due to the use of different forward and backward approximations, several piece-wise backward approximators are then investigated. The implementation of the resulting quantized network, denoted as HWGQ-Net, is shown to achieve much closer performance to full precision networks, such as AlexNet, ResNet, GoogLeNet and VGG-Net, than previously available low-precision networks, with 1-bit binary weights and 2-bit quantized activations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据