4.6 Article

Modeling of internal mechanical failure of all-solidstate batteries during electrochemical cycling, and implications for battery design

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 5, 期 36, 页码 19422-19430

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta03199h

关键词

-

资金

  1. U.S. Department of Energy, Office of Science [DE-SC0002633]

向作者/读者索取更多资源

This is the first quantitative analysis of mechanical reliability of all-solid state batteries. Mechanical degradation of the solid electrolyte (SE) is caused by intercalation-induced expansion of the electrode particles, within the constrains of a dense microstructure. A coupled electro-chemo-mechanical model was implemented to quantify the material properties that cause an SE to fracture. The treatment of microstructural details is essential to the understanding of stress-localization phenomena and fracture. A cohesive zone model is employed to simulate the evolution of damage. In the numerical tests, fracture is prevented when electrode-particle's expansion is lower than 7.5% (typical for most Li-intercalating compounds) and the solid-electrolyte's fracture energy higher than G(c) = 4 J m(-2). Perhaps counter-intuitively, the analyses show that compliant solid electrolytes (with Young's modulus in the order of ESE = 15 GPa) are more prone to micro-cracking. This result, captured by our non-linear kinematics model, contradicts the speculation that sulfide SEs are more suitable for the design of bulk-type batteries than oxide SEs. Mechanical degradation is linked to the battery power-density. Fracture in solid Li-ion conductors represents a barrier for Li transport, and accelerates the decay of rate performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据