4.6 Article

Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 5, 期 22, 页码 10968-10977

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta01773a

关键词

-

资金

  1. Key Project of National Natural Science Foundation of China [21433012]
  2. National Natural Science Foundation of China [21273270, 21473239, 21406258]
  3. National Program on Key Basic Research Project [2013CB933002]
  4. Natural Science Foundation of Jiangsu Province [BE2015072, BK20140385, BK20140384]

向作者/读者索取更多资源

Mixed matrix membranes (MMMs), i.e., organic-inorganic hybrid membranes, are one of the most promising membranes for overcoming the performance limitations of conventional polymer membranes in gas separation. Polymers of intrinsic microporosity (PIMs) have received considerable research interest due to their high permeability arising from their rigid and contorted chain structure. However, interfacial issues in PIM-based hybrid membranes are serious due to the low mobility and flexibility of their polymer chains. We present in this work the fabrication of a PIM-based hybrid membrane using amidoxime-functionalized PIM-1 as the polymer matrix and an amine-functionalized metal-organic framework (MOF), NH2-UiO-66, as the inorganic filler. In the hybrid membrane, amidoxime and amine groups tend to form hydrogen bonds, creating a hydrogen bond network between the two phases. Therefore, a nearly ideal and defect-free interface is constructed. The well-designed hybrid membrane exhibits excellent separation performance, especially for CO2 capture, with a CO2 permeability as high as 8425 barrer and CO2/N-2 and CO2/CH4 gas pair selectivities of up to 27.5 and 23.0, respectively. The overall separation performance of the hybrid membrane for CO2/N-2 and CO2/CH4 surpasses the 2008-updated Robeson upper bound and is outstanding compared with those of existing mixed matrix membranes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据