4.6 Review

Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: a critical review

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 5, 期 41, 页码 21625-21649

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta07290b

关键词

-

资金

  1. National Key Research and Development Program of China [2017YFA0207000]
  2. National Natural Science Foundation of China [21577032]

向作者/读者索取更多资源

Carbon dioxide (CO2) conversion into more valuable chemicals has attracted great research interest in recent years. Compared to homogeneous catalysts, heterogeneous catalysts are advantageous due to their recyclability and the easy separation of products from catalysts. Research has proved that photocatalysis, electrocatalysis and photoelectrocatalysis are able to reduce CO2 to produce a variety of organic compounds such as carbon monoxide, formic acid, methane, etc., which could not only possibly be used to reduce its accumulation in the atmosphere, but could also produce renewable hydrocarbon fuels. In these processes, catalysts play a significant role in the surface reactions, i.e. to decrease kinetic barriers and to increase activities. Although several review articles related to CO2 reduction have already been published in 2009-2014, due to booming studies in the field of materials, heterogeneously catalysed CO2 reduction has sprung up in recent decades. Therefore, it is important to provide a critical review of the recent progress in catalyst exploration for CO2 reduction, while also providing a framework for research prospects and guiding future research directions in laboratories or in industry. Herein, we review the encouraging research accomplishments achieved in the materials field in recent decades, in terms of structure engineering, cocatalyst development and hybrid catalyst system construction for CO2 reduction via photocatalysis, electrocatalysis and photoelectrocatalysis, with a summary of future research directions in the materials field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据