4.6 Article

Substitution of native silicon oxide by titanium in Ni-coated silicon photoanodes for water splitting solar cells

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 5, 期 5, 页码 1996-2003

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ta08774d

关键词

-

资金

  1. Young 1000 Global Talent Recruitment Program of the Ministry of Education of China
  2. National Natural Science Foundation of China [61502326, 41550110223, 11661131002]
  3. Jiangsu Government [BK20150343]
  4. Ministry of Finance of China [SX21400213]
  5. Young 973 National Program of the Chinese Ministry of Science and Technology [2015CB932700]

向作者/读者索取更多资源

Using an ultrathin (2 nm) evaporated Ti film to replace the native SiOX of the nSi photoanode and then coating it by thin (2 and 5 nm) Ni layers, the resulting 2 nm Ni/2 nm Ti coated nSi photoanodes (without the native SiOX) reach a photocurrent onset potential of -42 mV relative to the SCE reference electrode in 1 M KOH under 1 simulated sun illumination (-202 mV relative to the potential for the oxygen evolution reaction). With increasing the thickness of the Ni layer to 5 nm, the 5 nm Ni/2 nm Ti/nSi photoanodes show 50 mV lower onset potential than 5 nm Ni directly coated on native SiOX/nSi photoanodes and exhibit a very stable photoelectrochemical performance, which keep 100% activity (10 mA cm (2) at 0.8 V vs. SCE) for similar to 6.5 days. These results can be comparable to those of the typical NiOX coated nSi photoanodes with n-p(+) buried homojunctions. Using a Ti layer to replace the native SiOX of the nSi photoanodes increases the conductivity of the sample and helps the charge transfer process. In addition, the interlayer Ti film absorbs the oxygen from nearby layers or from the atmosphere, making the Ti layer partially oxidized. The in situ TiOX layer formed from evaporated Ti has more electron defects than the ALD deposited TiO2, and could be responsible for the improved hole conduction process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据