4.6 Article

Synthesis of an electronically modified carbon nitride from a processable semiconductor, 3-amino-1,2,4-triazole oligomer, via a topotactic-like phase transition

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 5, 期 18, 页码 8394-8401

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta01714f

关键词

-

向作者/读者索取更多资源

A thermally induced topotactic transformation of organic polymeric semiconductors is achieved using similarity of the chemical structures of two C,N,H-containing materials. Namely, the oligomer of 3-amino-1,2,4-triazole (OATA) is transformed into an electronically modified graphitic carbon nitride (OATA-CN) upon heating at 550 degrees C. During the transition, the flat band potential of the organic semiconductor is only slightly shifted from -0.11 eV to -0.06 eV, while the optical band gap is significantly expanded from 1.8 eV to 2.2 eV. The advantage of the suggested approach is the processability of the starting semiconductor combined with minor morphology changes during the heat-treatment that enable preservation of the original oligomer micro- and macrostructures in the resulting carbon nitrides. As an illustration, different OATA morphologies, including spherical nanoparticles, nanobarrels, nanowires and self-assembled macrospheres and composite sheets are synthesized and then transformed into OATA-CN with the retention of morphology. The surface area of the final carbon nitrides reaches 66 m(2) g(-1), without using any template, auxiliary reagent or post treatment. As a consequence, the photocatalytic activity of the obtained carbon nitrides in visible light driven hydrogen evolution is up to 5 times higher than that measured for the reference bulk carbon nitride prepared by pyrolysis of melamine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据