4.6 Article

An asymmetric supercapacitor with excellent cycling performance realized by hierarchical porous NiGa2O4 nanosheets

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 5, 期 36, 页码 19046-19053

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta05493a

关键词

-

资金

  1. Science and Technology Development Fund from Macau SAR [FDCT-098/2015/A3, FDCT-064/2016/A2]
  2. Research & Development Office at the University of Macau [SRG2015-00057-FST]
  3. UEA
  4. Korean Government (MSIP) through the National Research Foundation of Korea (NRF) - Ministry of Education, Science, and Technology (MEST) [2015R1A5A1037668]
  5. National Research Foundation of Korea [2015R1A5A1037668] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Rational design of the composition and electrochemically favorable structural configuration of electrode materials are highly required to develop high-performance supercapacitors. Here, we report our findings on the design of interconnected NiGa2O4 nanosheets as advanced cathode electrodes for supercapacitors. Rietveld refinement analysis demonstrates that the incorporation of Ga into NiO leads to a larger cubic lattice parameter that promotes faster charge-transfer kinetics, enabling significantly improved electrochemical performance. The NiGa2O4 electrode delivers a specific capacitance of 1508 F g(-1) at a current density of 1 A g(-1) with a capacitance retention of 63.7% at 20 A g(-1), together with excellent cycling stability after 10 000 charge-discharge cycles (capacitance retention of 102.4%). An asymmetric supercapacitor device was assembled by using NiGa2O4 and Fe2O3 as cathode and anode electrodes, respectively. The ASC delivers a high energy density of 45.2 W h kg(-1) at a power density of 1600 W kg(-1) with exceptional cycling stability (94.3% cell capacitance retention after 10 000 cycles). These results suggest that NiGa2O4 can serve as a new class cathode material for advanced electrochemical energy storage applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据