4.6 Article

Interlayer expansion of few-layered Mo-doped SnS2 nanosheets grown on carbon cloth with excellent lithium storage performance for lithium ion batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 5, 期 8, 页码 4075-4083

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta00236j

关键词

-

资金

  1. Guangxi University of science and technology research [KY2015ZD051]
  2. Guilin University of Technology research start-up funds [002401003418]
  3. Guangxi Natural Science Foundation [2015GXNSFCA139018]

向作者/读者索取更多资源

New conceptions of developing various nanostructure materials supported on conductive substrates are urgently required for additive-free integrated electrodes for lithium ion batteries (LIBs). In this work, Mo-doped SnS2-based nanosheets were directly grown on a conductive substrate, carbon cloth, via a facile hydrothermal method. Significantly, the as-synthesized samples possess a three-dimensional network structure consisting of interconnected nanosheets, which can be directly employed as additive-free integrated electrodes for LIBs. The as-obtained CC@Sn0.9Mo0.1S2 nanosheets exhibit initial high discharge and charge capacities of 2033.6 and 1869.8 mA h g(-1) at a current density of 1 A g(-1), with a coulombic efficiency of 91.9%. A high reversible discharge capacity of 1950.8 mA h g(-1) is obtained after 200 cycles. Moreover, a high reversible capacity of 914.5 mA h g(-1) is achieved even at a high current density of 5 A g(-1), which significantly exceeds the theoretical capacity of commercial graphite and reversible capacity of SnS2. A full lithium ion battery was assembled composed of the CC@Sn0.9Mo0.1S2 anode and a commercial LiCoO2 cathode, which also delivered high capacity and cycling stability. The excellent electrochemical lithium storage performance of Mo-doped SnS2 could be attributed to the molybdenum doping, which limited the number of layers of the nanosheets, enlarged the interlayer spacing and generated rich defects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据