4.6 Article

Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 5, 期 47, 页码 24677-24685

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta07653c

关键词

-

资金

  1. National Key Research and Development Program of China New Energy Project for Electric Vehicle [2016YFB0100204]
  2. National Science Foundation of China [21373028]
  3. Joint Funds of the National Natural Science Foundation of China [U1564206]
  4. Major achievements Transformation Project for Central University in Beijing
  5. Science and the Technology Project of State Grid Corporation of China [15-JS-191]

向作者/读者索取更多资源

High safety is a long-sought-after goal in the energy storage field. We fabricate a high-safety solid-state electrolyte by in situ immobilizing ionic liquids within a nanoporous zirconia-supported matrix. This ionogel electrolyte provides a combination of the solid-like physical support and liquid-like ionic transport performance, which substantially improves the thermal stability and safety without sacrificing ionic conductivity. Both Raman spectra and density functional theory computations indicate that the zirconia skeleton interacts with the Li salts, promoting the dissociation and transport of Li+. The solid-state cell assembled with this electrolyte possesses excellent cycling performance, with a discharge capacity of 135.9 mA h g(-1) after 200 cycles at 30 degrees C and works well in a wide operating temperature range from -10 to 90 degrees C. Moreover, the good compatibility and stable interface toward Li-metal anodes in a symmetrical cell demonstrates the usefulness of the electrolyte in Li-metal batteries. These results indicate that this ionogel electrolyte has great promise for application in the energy storage field because of its dramatically improved safety characteristic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据