4.6 Article

Free-standing compact cathodes for high volumetric and gravimetric capacity Li-S batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 5, 期 37, 页码 19924-19933

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta06781j

关键词

-

资金

  1. Loughborough University

向作者/读者索取更多资源

Free-standing high performance Li-S battery cathodes are currently attracting significant research efforts. Loose macroporous structures have been proposed by many to improve sulfur utilization and areal capacity. However, their low cathode sulfur densities and high electrolyte fractions lead to low cell volumetric and gravimetric capacities. We report here a compact free-standing Li-S cathode structure that delivers areal, volumetric and gravimetric capacities all exceeding those of typical Li-ion batteries. The cathodes, formed by pressure filtration of the constituents, are composed of highly micro/mesoporous nitrogen-doped carbon nanospheres (NCNSs) embedded in the macropores of a multi-walled carbon nanotube (MWCNT) network to form a dense structure. The MWCNT network facilitates low cathode impedance. The NCNSs maximize sulfur utilization and immobilization. These collectively result in high cathode volumetric capacity (1106 mA h cm(-3)) and low electrolyte requirement (6 mu L mg(-1) of sulfur), which together lead to high cell-level gravimetric capacity. Stable long-term cycling at 0.3C (2.5 mA cm(-2) for 5 mg cm(-2) areal sulfur-loading) has also been achieved, with the areal and volumetric capacities of the best remaining above typical Li-ion values over 270 cycles and the per-cycle capacity fading being only 0.1%. The facile preparation means significant potential for large scale use.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据