4.4 Article

On avoiding Ostrogradski instabilities within Asymptotic Safety

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 12, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP12(2017)121

关键词

Models of Quantum Gravity; Nonperturbative Effects; Renormalization Group

资金

  1. Netherlands Organisation for Scientific Research (NWO) within the Foundation for Fundamental Research on Matter (FOM) [13VP12]

向作者/读者索取更多资源

We study the renormalization group flow of gravity coupled to scalar matter using functional renormalization group techniques. The novel feature is the inclusion of higher-derivative terms in the scalar propagator. Such terms give rise to Ostrogradski ghosts which signal an instability of the system and are therefore dangerous for the consistency of the theory. Since it is expected that such terms are generated dynamically by the renormalization group flow they provide a potential threat when constructing a theory of quantum gravity based on Asymptotic Safety. Our work then establishes the following picture: upon incorporating higher-derivative terms in the scalar propagator the flow of the gravity-matter system possesses a fixed point structure suitable for Asymptotic Safety. This structure includes an interacting renormalization group fixed point where the Ostrogradski ghosts acquire an in finite mass and decouple from the system. Tracing the flow towards the infrared it is found that there is a subset of complete renormalization group trajectories which lead to stable renormalized propagators. This subset is in one-to-one correspondence to the complete renormalization group trajectories obtained in computations which do not keep track of the higher-derivative terms. Thus our asymptotically safe gravity-matter systems are not haunted by Ostrogradski ghosts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据