4.4 Article

Scalar gravitational waves in the effective theory of gravity

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 7, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP07(2017)043

关键词

Anomalies in Field and String Theories; Models of Quantum Gravity; Effective Field Theories

资金

  1. Center for Space and Earth Science (CSES) of Los Alamos National Laboratory

向作者/读者索取更多资源

As a low energy effective field theory, classical General Relativity receives an infrared relevant modification from the conformal trace anomaly of the energy-momentum tensor of massless, or nearly massless, quantum fields. The local form of the effective action associated with the trace anomaly is expressed in terms of a dynamical scalar field that couples to the conformal factor of the spacetime metric, allowing it to propagate over macroscopic distances. Linearized around flat spacetime, this semi-classical EFT admits scalar gravitational wave solutions in addition to the transversely polarized tensor waves of the classical Einstein theory. The amplitude of the scalar wave modes, as well as their energy and energy flux which are positive and contain a monopole moment, are computed. Astrophysical sources for scalar gravitational waves are considered, with the excited gluonic condensates in the interiors of neutron stars in merger events with other compact objects likely to provide the strongest burst signals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据