4.4 Article

Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 9, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP09(2017)096

关键词

Effective Field Theories; Space-Time Symmetries; Quantum Dissipative Systems

资金

  1. U.S. Department of Energy (D.O.E.) [DE-FG0205ER41360]

向作者/读者索取更多资源

In this paper we further develop the fluctuating hydrodynamics proposed in [1] in a number of ways. We first work out in detail the classical limit of the hydrodynamical action, which exhibits many simplifications. In particular, this enables a transparent formulation of the action in physical spacetime in the presence of arbitrary external fields. It also helps to clarify issues related to field redefinitions and frame choices. We then propose that the action is invariant under a Z(2) symmetry to which we refer as the dynamical KMS symmetry. The dynamical KMS symmetry is physically equivalent to the previously proposed local KMS condition in the classical limit, but is more convenient to implement and more general. It is applicable to any states in local equilibrium rather than just thermal density matrix perturbed by external background fields. Finally we elaborate the formulation for a conformal fluid, which contains some new features, and work out the explicit form of the entropy current to second order in derivatives for a neutral conformal fluid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据