4.6 Article

Hydrothermal conversion of lignocellulosic biomass into high-value energy storage materials

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 26, 期 4, 页码 783-789

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jechem.2017.04.011

关键词

Biomass; Energy storage; Hierarchical porosity; Hydrothermal carbonization; Supercapacitor

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [112T570]

向作者/读者索取更多资源

Preparation of hierarchically porous, heteroatom-rich nanostructured carbons through green and scalable routes plays a key role for practical energy storage applications. In this work, naturally abundant lignocellulosic agricultural waste with high initial oxygen content, hazelnut shells, were hydrothermally carbonized and converted into nanostructured 'hydrochar'. Environmentally benign ceramic/magnesium oxide (MgO) templating was used to introduce porosity into the hydrochar. Electrochemical performance of the resulting material (HM700) was investigated in aqueous solutions of 1 M H2SO4, 6 M KOH and 1 M Na2SO4, using a three-electrode cell. HM700 achieved a high specific capacitance of 323.2 F/g in 1 M H2SO4 (at 1 A/g, -0.3 to 0.9 V vs. Ag/AgCl) due to the contributions of oxygen heteroatoms (13.5 wt%) to the total capacitance by pseudo-capacitive effect. Moreover, a maximum energy density of 11.1 Wh/kg and a maximum power density of 3686.2 W/kg were attained for the symmetric supercapacitor employing HM700 as electrode material (1 M Na2SO4, Delta E = 2 V), making the device promising for green supercapacitor applications. (C) 2017 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据